
SCIBORG: Secure Configurations for the IOT Based
on Optimization and Reasoning on Graphs

Hamed Soroush*, Massimiliano Albaneset, Milad A. Mehrabadi*, Ibifubara Iganibot, Marc Mosko*,

Jason H. Gaol, David J. Fritzt Shantanu Rane*, Eric Bier*,
*Palo Alto Research Center, Palo Alto, CA 94304, USA, Email: {hsoroush,srane,bier,mmosko}@parc.com

tGeorge Mason University, Fairfax, VA 22030, USA, Email: { malbanes,iiganibo} @gmu.edu
t Sandia National Laboratories, XXXXX, USA, Email: {jhgao,djfritz}@sandia.gov

Abstract—Addressing security misconfiguration in complex
distributed systems, such as networked Industrial Control Sys-
tems (ICS) and Internet of Things (IoT) is challenging. Owners
and operators must go beyond tuning parameters of individual
components and consider the security implications of configu-
ration changes on entire systems. Given the growing scale of
cyber systems, this task must be highly automated. Prior work
on configuration errors largely ignores the security impact of
configurations of connected components. To address this gap,
we present SCIBORG, a framework that improves the security
posture of distributed systems by examining the impact of
configuration changes across interdependent components through
a graph-based model of the system and its vulnerabilities. It
defines a Constraint Satisfaction Problem from the graph-based
model and uses an SMT solver to find optimal configuration
parameter values that minimize the impact of attacks while
preserving system functionality. The framework also provides
supporting evidence for the proposed configuration changes. We
evaluate SCIBORG on an IoT testbed.

I. INTRODUCTION

As cyber systems become increasingly complex and con-
nected, configuration analytics begins to play an increasingly
critical role in their correct and secure operation. Attackers
typically rely on unpatched vulnerabilities and configuration
errors to gain unauthorized access to system resources. Mis-
configuration can occur at any level of a system's software
architecture, and correctly configuring systems becomes in-
creasingly complex when multiple interconnected systems are
involved. Security Misconfiguration was listed by OWASP
amongst the ten most critical web application security risks
in 2017 [12]. Current configuration security approaches focus
on tuning the configuration of individual components while
lacking a principled approach to managing the complex rela-
tionships between the configuration parameters of the compo-
nents of a complex system. Additionally, current configurations
are mostly static, governed by slow and deliberative processes,
with significant involvement from human analysts.

In this paper, we first corroborate the significance of se-
curity misconfiguration vulnerabilities by analyzing data from
the National Vulnerability Database (NVD)1 and Shodan2. We
then present the design, implementation, and evaluation of
SCIBORG, a system that addresses the mentioned limitations.
Our key contributions can be summarized as follows. First,
we model a composed system using a multi-layer graph

1https://nvd.nist.gov
2https://www.shodan.io/

comprising a dependency sub-graph that captures the func-
tional relationships among system components, a configuration
subgraph that accounts for relationships among configuration
parameters within and across components, and an attack
subgraph modeling the system's vulnerabilities and their use
in multi-step attacks. Second, we characterize the potential
impact of multi-step attacks enabled by configuration settings.
Prior work on minimizing a system's attach surface does not
capture the intricate relationships between configuration pa-
rameters, attack paths available to an adversary, and functional
dependencies among system components. Thus, it generally
fails to reduce the risk associated with residual vulnerabilities.
Third, we develop algorithms and software tools to jointly
analyze the subgraphs of the multi-layer graph in order to
reason about the impact of a candidate configuration set on
the security and functionality of the composed system. We
use a Satisfiability Modulo Theory (SMT) solver to express
the complex relationships among the configuration parameters
as constraints in a security optimization problem.

We have implemented SCIBORG as a scalable pipeline that
(i) ingests system requirements, configuration files, software
documentation and various types of configuration vulnerabili-
ties, (ii) builds a queryable, graph-based representation of the
relationships between configuration vulnerabilities and attack
scenarios, configuration parameters and system components,
(iii) provides an API to perform a quantitative, compara-
tive analysis of the security impact of configuration settings,
(iv) automatically constructs a constraint satisfaction problem
based on the model and utilizes Z3 SMT solver to solve for
optimal parameter values, and (v) provides human-readable
evidence about optimality of the selected configuration.

The remainder of the paper is organized as follows. Sec-
tion II presents background information to motivate our work.
Then, Section III presents the proposed model in detail, and
Section VI reports results from our evaluation. Finally, Sec-
tion VII discusses related work, and Section VIII gives some
concluding remarks and identifies future research directions.

II. MOTIVATION

A significant fraction of the downtime of critical infrastruc-
ture has been attributed to misconfigurations. Configuration-
related vulnerabilities can cause adverse outcomes that impact
security and functionality, including data breaches, denial of
service, system downtime, and inefficient operation. However,
many configuration-related vulnerabilities are not reported to

SAND2020-1750C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

vulnerability databases, such as NVD, because they are consid-
ered user errors rather than software issues. Consequently, es-
timating the prevalence and significance of such vulnerabilities
is challenging. Nevertheless, one can get lower bounds on these
metrics by analyzing those vulnerabilities that get reported and
by using services such as Shodan that index information about
the configuration of Internet-connected devices.

Below, we present a longitudinal analysis of configuration
vulnerabilities reported to NVD as well as an analysis of
devices on Shodan that suffer from security-related vulnera-
bilities. This analysis allows us to conclude that configuration
vulnerabilities linger in Industrial Control and IoT systems for
an unacceptable amount of time compared to non-configuration
related vulnerabilities, in spite of their generally higher impact.

A. Dataset Configuration-Related Vulnerabilities in NVD

We gathered all Common Vulnerability and Exposure
(CVE) entries3 from NVD reported between 2010 and 2018.
A typical NVD entry has one or more Common Weakness
Enumeration Specification (CWE) labels4 indicating the type
of vulnerability. We identified several such categories, listed in
Table I, as configuration-related vulnerabilities in our Dataset
I. After removing entries with no CWE label, this dataset
contains 67,742 vulnerabilities. Fig. 1 shows how the number
of reported vulnerabilities has changed over the analysis period
along with the fraction of configuration-related CVEs for each
year. As a longitudinal study, Fig. 2 shows the evolution
of the impact score derived from the Common Vulnerability
Scoring System5 (CVSS) version 3.0 for config and non-config
vulnerabilities over the analysis period. Config vulnerabilities
have generally higher impact than non-config ones. The impact
score of recent configuration vulnerabilities has lower variance,
indicating higher confidence in their impact.

TABLE I. SOFTWARE CONFIGURATION VULNERABILITY CATEGORIES

CWE ID Name NVD Short Description
CWE- 16 Configuration Weaknesses in this category are typically

introduced during the configuration of the
software.

CWE-255 Credential Management Weaknesses in this category are related to
the management of credentials.

CWE-264 Permissions, Privileges, and
Access Controls

Weaknesses in this category are related
to the management of permissions, privi-
leges, and other security features that are
used to perform access control.

CWE-275 Permission Issues Weaknesses in this category are related
to improper assignment or handling of
permissions.

CWE-284 Improper Access Control The software does not restrict or incor-
rectly restricts access to a resource from
an unauthorized actor.

CWE-285 Improper Authorization The software does not perform or incor-
rectly performs an authorization check
when an actor attempts to access a re-
source or perform an action.

CWE-552 Files or Directories Accessi-
ble to External Parties

Files or directories are accessible in the
environment that should not be.

CWE-665 Improper Initialization The software does not initialize or incor-
recfly initializes a resource, which might
leave the resource in an unexpected state
when it is accessed or used.

CWE-769 Uncontrolled File Descriptor
Consumption

The software can be influenced by an
attacker to open more files than are sup-
ported by the system.

3 http://cve.mitre.org/

4https://cwe.mitre.org/

5 https://nvd.nist.gov/vuln-metrics/cvss

14000

12000

noon
,re

8000

5

z

6000

4000

2000

0
2010 2011 2012 2013 2014 2015 2016 2017 2018

Time

▪ Non-config
▪ Config

o
o

o.

Fig. 1. Number of config versus non-config vulnerability reports over time.

6.0-

a, 5.5-

:5
5.0-

a 4.5-
E

-

j 3.5-
u

— Non-configl
- Config

3.0-

ti" tis' ti-v N°` ti? ti\ tib
'19 '19 19 '19 '0 '19 '0 "0 '0

Time

Fig. 2. CVSS 3.0 impact score for config and non-config vulnerabilities.

Fig. 3 shows the complementary CDF of different scores
for config and non-config vulnerabilities, for both CVSS 2.0
and CVSS 3.0. In particular, we analyze the distribution of
the Impact Score, Exploitability Score, and Severity Score,
which is a combination of the Impact and Exploitability scores.
As Fig. 3(a) shows, config-related vulnerabilities have higher
impact than non-config-related vulnerabilities for both CVSS
2.0 and CVSS 3.0 The exploitability score of config-related
vulnerabilities is lower compared to non-config vulnerabilities,
as shown in Fig. 3(b). However, as shown in Fig. 3(c),
higher impact of config-related vulnerabilities prevails over the
exploitability and makes for an overall higher severity score.

B. Dataset Config-Related Vulnerabilities in Shodan

Shodan is a popular search engine for characterizing Inter-
net facing IoT devices and services. It utilizes custom crawlers
that scan the Internet regularly and store information about
hosts, such as potential device tag name(s), product name,
IP address, vulnerabilities, crawler type, and a timestamp of
the scan. Shodan makes this longitudinal information available
through a graphical user interface and an API.

We established our second dataset, Dataset II, by obtaining
all data from Shodan until August 2019, focusing our analysis
on ICS and IoT devices in the United States. For each such
device, we acquire detailed historical information (e.g., vul-
nerability/infection information over time or whether they've
been tagged as honeypots in the past) by querying Shodan
using its API. We remove IP addresses that had at least one
report of being tagged as a honeypot in the past (88 addresses
for ICS and 0 for IoT devices) or that have no vulnerability
information available. Our Dataset II includes 3,143 and 1,839
distinct IP addresses with vulnerability information for ICS
and IoT devices, respectively. These data include standard
vulnerabilities from NVD and Microsoft security bulletins6.
We identify the type of each vulnerability by looking up its

6https://docs.microsoft.com/en-us/security-updates/

'0)
0.4

0.0

I=1 CVSS2 Non-config

▪ CVSS2 Config

CVSS3 Non-config

LID CVSS3 Config

2

4 6cyss_impact

0.0

CVSS2 Non-config

▪ CVSS2 Config

O CVSS3 Non-contig

▪ CVSS3 Config

4 fi

cyss_exploitability

0.4

0.0

CVSS2 Non-cant-1g

LID CVSS2 Config

O CVSS3 Nonoonfig

CVSS3 Config

4 6

cvss_seyenty

Fig. 3. Complementary cumulative distribution function (CCDF) of config versus non-config (a) impact score, (b) exploitability score, and (c) severity score
of CVE entries in NVD dataset from 2010 to 2018 for CVSS versions 2.0 and 3.0.

CWE label from NVD and label configuration-related and non-
configuration related vulnerabilities according to Table I. To
identify the type of each vulnerability, we focus on NVD-
based vulnerabilities and extract CWE labels from NVD data
to be consistent with Section II-A.

Fig. 4 shows an analysis of the lingering time (in days) of
vulnerabilities in IoT and ICS systems. Config vulnerabilities
last longer in both ICS and IoT systems. While almost 18% of
non-config vulnerabilities for IoT systems linger for more than
300 days (out of the 16-month period of available historical
data), about 28% of config-related vulnerabilities last more
than 300 days. The percentages are higher for ICS systems:
30% and 40% for non-config and config vulnerabilities, respec-
tively. These results indicate that, despite their high impact,
configuration vulnerabilities linger for an unacceptable amount
of time in ICS and IoT systems, emphasizing the need for
solutions that discover and remediate them.

1.0

0.8

"8 0.6

0.4

0.2

0.0
0 100 200 300 400 500
Lingering Time for Shodan loT Vulns

1.0

0.8

'8 0.6

0.4

0.2

0.0
0 100 200 300 400 500
Lingering Time for Shodan ICS Vulns

Fig. 4. Lingering time of configuration and non-configuration vulnerabilities
in (a) IoT devices and (b) ICS devices, as reported by Shodan.

III. MULTI-LAYER GRAPH MODEL

SCIBORG's approach is based on modeling the distributed
system (or composed system) as a three-layer directed graph
efficiently encoding the information needed to reason upon
the optimality of system configurations. The three layers are
(i) a dependency subgraph; (ii) a configuration subgraph; and
(iii) a vulnerability subgraph. Directed edges between the three
subgraphs define the functional composition and the attack sur-
face for a configuration set. For illustrative purposes, a three-
layer graph corresponding to the notional distributed system of
Fig. 5 is depicted in Fig. 6. The SCIBORG implementation and
evaluation of an actual IoT system is discussed in Section VI.

A. Dependency Subgraph

Configuration changes in one component can have a dra-
matic impact on the security and functionality of other com-
ponents. Globally optimal security decisions — e.g., deciding
which vulnerabilities to make unreachable through configura-
tion changes — need dependency information. To this aim, we

Web Server (hel

Catalog Server (hal

DB Server (he)

Local DB Server (hg)

Mobile App Server (hc)

Order Processing Server (h,)

Local DB Server (h,,)

Fig. 5. Network diagram of a notional e-commerce system.

o.s

a7
.—
as

—

D9ySaenb4e"rgrapy

rnysql allow,ersistent

max_connectio

1=1

UE

Fig. 6. A graph corresponding to the system of Fig. 5.

explicitly models dependencies. While finding all dependen-
cies is a difficult problem beyond the scope of SCIBORG,
we derive a useful set of dependencies by analyzing standard
operating procedures or using approaches such as [4], [11].

A node in the dependency subgraph represents a system
component, and a directed edge represents a dependency be-
tween two components. Depending on the level of granularity
of the model, a component may be a host or an individual
service running on a host. When dependencies are captured at
the lowest possible level of granularity, the dependency graph
is expected to be acyclic. Current approaches to dependency
discovery may generate graphs with cycles, but such cycles
are often an indication that the system has not been analyzed
at a sufficient level of granularity, and can be broken by
breaking macro-components into sub-components. Literature
on call graphs shows how we can identify dependencies at the
level of individual procedure and function calls and construct
acyclic graphs modeling such dependencies [13].

To capture a wide range of possible relationships between a

system's components, we model each dependency as a function
from a family .F of functions of the form f : [0, 1]n —> [0, 1],
with f (0, . . . , 0) = 0 and f (1, . . . ,1) = 1. Each component
has a value (or utility) for the organization and its dependency
function defines its ability to deliver its expected value, based
on the status of the components it depends on: the arguments
of this function are the percentage residual values of such
components and are in turn computed through each compo-
nent's respective dependency function. A dependency function
returns 1 when the component can to deliver 100% of its value,
and 0 when the component has been completely compromised
and cannot deliver any value. We identify three major cat-
egories of dependency relationships, namely (i) redundancy
(fr), wherein a component depends on a redundant pool of
resources; (i i) strict dependence (h), wherein a component
strictly depends on a pool of other components, such that,
if one fails, the dependent component no longer delivers
value; and 0 i 0 graceful degradation (fd), wherein a component
depends on a pool of other components such that, if one
fails, the system continues to work with degraded performance.
Such classification is not intended to be exhaustive, and other
dependency relationships can be introduced by defining the
corresponding dependency functions, as shown below for the
three categories listed above.

1, if 3i E [1, n] s.t. 1, = 1
. • • = 0, otherwise

1 n

fd (11, in) = 12
t=,

1, if Vi E [1, n], = 10, otherwise

(1)

(2)

(3)

Fig. 6 shows the dependency subgraph for our notional
system. An edge from hA to hB denotes that hA depends
on hB. Each node is labeled with the type of dependency
and a number representing the value of the corresponding
component. Such values can be assigned by a domain expert or
automatically derived by computing graph-theoretic centrality
metrics [7], which indicate how important (or central) each
node is for the operation of a system or mission. In the security
field, ad-hoc centrality measures are used for botnet detection
and mitigation [17].

B. Configuration Subgraph

The configuration subgraph models relationships between
configuration parameters, both within a component and across
different components of the composed system. There are two
classes of vertices in the configuration subgraph, namely,
Class 1 vertices, which represent per-component configuration
parameters, and Class 2 vertices, which capture constraints on
one or more configuration parameters. Edges from one or more
Class 1 vertices to a Class 2 vertex identify the parameters
involved in a constraint. Some of these constraints are specified
in the component's or composed system's documentation.
More importantly, some of the relationships between config-
uration parameters might enable or disable preconditions for
vulnerabilities in one or more components. SCIBORG captures
this information by means of directed edges from Class 2
vertices of the configuration subgraph to relevant nodes in
the vulnerability subgraph. The constraints associated with
a given system configuration induce a specific vulnerability

subgraph for the composed system. For instance, in Fig. 5,
the constraint enable_debug_mttode = TRUE, which must
be satisfied when the system is in debug mode, creates the
preconditions to exploit vulnerability Va.

The degree to which configuration parameter dependencies,
within and across components, can be captured depends to a
large degree on the complexity of the components themselves
and the completeness of their documentation, including the set
of standard operating procedures adopted by an organization.
Additionally, SCIBORG extracts configuration information —
in a variety of formats, including XML and JSON — from
specification documents for commercial off-the-shelf (COTS)
components. Finally, for each component, SCIBORG also
ingests vulnerability information from NVD.

C. Vulnerability Subgraph

Vulnerability subgraphs, also known as attack graphs,
are powerful conceptual tools to represent knowledge about
vulnerabilities and their dependencies. To assess the impact
of configuration changes on a system's attack surface, we
will employ vulnerability subgraphs as formalized in [1],
which in turn relies on the compact representation of attack
graphs that was proposed in [3]. Such representation keeps
one vertex for each exploit or security condition, leading to
an acyclic attack graph of polynomial size in the total number
of vulnerabilities and security conditions. A vulnerability sub-
graph for our notional system is depicted in Fig. 6: vertices
represent known vulnerabilities, and an edge from vulnerability
vA to vulnerability vB indicates that exploiting vA creates
the preconditions for exploiting vB. These subgraphs can be
generated by combining information from network scanners
(e.g., Nessus7) and vulnerability databases (e.g., CVE, NVD),
as shown in [3], [6], [15].

SCIBORG's approach differs from the traditional idea of
minimizing the attack surface by minimizing, for instance, the
number of exploitable resources available to the adversary.
Instead, we analyze the paths that an adversary can traverse
in a multi-step attack that seeks to achieve a well-defined
goal (e.g., compromising a series of devices that lead up to
a database and then exfiltrating sensitive information from
that database), and evaluate the impact resulting from such
attacks. The edges in the vulnerability subgraph of Fig. 6 are
labeled with probability values, which can be used to infer the
most likely paths that an attacker might take in a multi-step
attack. Determining the probability values is an open research
problem, though useful heuristics exist [2], [1]. For instance,
the likelihood that an attacker will exploit a given vulnerability
can be derived from (i) the skill level of the attacker relative
to the complexity of the exploit [8]; (ii) the resources and time
available to the adversary; (ii i) other metrics defined in CVSS.
The rationale is that vulnerabilities that require more resources,
time, and skill are less likely to be exploited. For example,
CVSS defines the Access Complexity (AC) of a vulnerability
as a measure of the intricacy of the attack required to exploit
that vulnerability once an attacker has gained access to the
target system. These probabilities are used to determine the
security impact of a given configuration.

7http://www.tenable.com/products/nessus

D. Edges across Subgraphs

In addition to edges within subgraphs, our model includes
directed edges across the three subgraphs as described below.

Dependency Subgraph Configuration Subgraph. A di-
rected edge from a component in the dependency graph to
a Class 1 vertex in the configuration graph represents the list
of configuration parameters associated with that component.
There are no edges between the dependency subgraph and
Class 2 vertices in the configuration subgraph.

Configuration Subgraph —> Vulnerability Subgraph. A di-
rected edge between a Class 2 node in the configuration
subgraph to a vertex in the vulnerability subgraph implies
that the constraint expressed in the Class 2 vertex represents
a precondition for exploiting that vulnerability.

Vulnerability Subgraph —> Dependency Subgraph. An edge
from a vulnerability in the vulnerability subgraph to a compo-
nent in the dependency subgraph represents the exposure factor
of the component to the exploitation of that vulnerability. The
exposure factor, which ranges from 0 to 1, is interpreted as a
percentage. In classical risk analysis terminology, the Single
Loss Expectancy (SLE), the loss due to a single incident,
is defined as the product of the Asset Value (AV) and the
Exposure Factor (EF): SLE = AV x EF.

IV. TECHNICAL APPROACH

In this section, we first illustrate how to assess the impact of
multi-step attacks, and then present our graph-based approach
to optimizing configurations using constraint satisfaction.

A. Impact Calculation for Multi-Step Attacks

We can compute the impact on a distributed system of
multi-step attacks that are enabled under a given system con-
figuration. Suppose that an attacker exploits vulnerability vc.
in Fig. 6. This makes component hc completely unavailable,
as its exposure factor with respect to vc. is 1. As hT strictly
depends on hc, hT also becomes unavailable, leading to a
marginal impact of 7+ 7 = 14. Based on these observations,
we define the impact function for a single attack step as

impact(vj) = (.93_1(h)— s,(h))- u(h), (4)
hEH

where sj_1(h) and sj (h) respectively denote the relative
residual utility of component h before and after exploitation
of vj in an attack path P = (vi,... ,), and u(h) is the
original utility of h. For a given attack step vj, this impact
function adds up the marginal losses for all the components
affected (either directly or indirectly) by the exploitation of
vj. Therefore, the impact of exploiting vj depends on what
other vulnerabilities were exploited in previous attack steps and
how they impacted the system. In fact, in a multi-step attack,
the utility of each component may further decrease after each
attack step. In practice, s(h) can be defined as follows:

s (h)= {
1' if i = 0
fh (si(h1), , si(h,,)), otherwise (5)

where fh is the dependency function associated with compo-
nent h and h1, . . . , h,„ are the components that h depends on.

Our graph model provides non-obvious insights about
security optimization. For instance, after exploiting vc, the
attacker may take one of two steps, exploiting either VD
with probability 0.7 or vF with probability 0.3. Intuition
suggests that, as the attacker is more likely to exploit vD,
that vulnerability should be preferentially patched or addressed
before vF. However, this approach turns out to be inefficient, as
we now explain. The additional impact of exploiting vD would
be 0.7. 5 = 3.5, as hc and hT are already unavailable because
of the previous exploit. In comparison, the additional impact of
exploiting vF would be 0.7.7+8+10 = 22.9, as compromising
hF also makes hA and hs unavailable. This suggests that, even
though the attacker is more likely to exploit VD, the security
benefit of addressing vF is greater. Quantitatively, the impact
of an adversary sequentially exploiting v1, , vh in a path
P = (vi, , vh) in the vulnerability subgraph is:

impact(P) = E E(s,_,(h) — .s,(h)) • u(h) (6)
j=1 hEH

In this analysis, it is critical to compare attack paths and
prioritize countermeasures. Our goal is to identify config-
uration changes that minimize the system's attack surface,
by blocking high-impact attack paths. To achieve this goal,
we define attack surface metrics that consider the likelihood
and potential impact of each attack path, rather than simply
counting the vulnerable entry points. A simple yet effective
metric is:

attack_surface(S) = Eimpact(P,,) • Pr(P) (7)
z=1

where P1, , Pm are known attack paths, and impact(Pi) and
Pr(Pi) are the impact and likelihood of P, respectively.

Our impact calculation can be extended to assess the impact
of multiple attacks executed concurrently. The worst case is
one where, at each step, the attacker exploits, with probability
1, all vulnerabilities for which preconditions are satisfied. If
(V]. , , Vm,) is a topological sort of all the nodes in the attack
graph, then the attack surface metric can be defined as

m

attack_surface(S) = E E (s3_1(h) — s,(h)) • u(h) (8)
j=1 hEH

In other words, Eq. 8 defines the attack surface as the
potential impact of a multi-step attack in which all attack paths
are pursued concurrently. Although unrealistic in practice, this
scenario provides an upper bound on a system's susceptibility
to attacks. A more realistic worst-case scenario would consider
the relative complexity of exploiting different vulnerabilities,
providing a trade-off between the two scenarios of Eqs. 7
and 8. However, intuition suggests that minimizing the attack
surface as defined by Eq. 7 would (at least sub-optimally)
minimize any other reasonable attack surface metrics.

B. Config Security as a Constraint Satisfaction Problem

SCIBORG aims to find configurations that minimize se-
curity impact while satisfying configuration constraints and
preserving the functionality of the distributed system. These
secure configurations are computed as follows: Without loss
of generality, denote the ith configuration parameter as L and

TABLE II. INFORMATION INGESTED BY SCIBORG.

Data Items Source Used By
Configuration Parameters Meta Data (type, default
value, required?, text description)

Specification sheets on manufacturer websites in machine-readable data
formats including HTML, CSS, JSON, XML, or in natural language.

Modeling Framework (Configuration Subgraph)

Configuration Parameters Values Configuration F les Modeling Framework (Configuration Subgraph)
Available constraints on configuration parameters to
ensure legitimacy of parameter values

Standard operating procedure and/or component documentation, in ma-
chine readable format, natural language, or from user input

Modeling Framework (Configuration Subgraph)

Available constraints on configuration parameters to
ensure a functional system

Standard operating procedure for the distributed system, provided both in
machine readable formats and natural language.

Modeling Framework (Configuration Subgraph)

Functional dependencies between system components Entity in charge of the design and commissioning of the system. Modeling Framework (Dependency Subgraph)
Known vulnerabilities in system components National Vulnerability Database (NVD) bug reports Modeling Framework (Vulnerability Subgraph)
Security best practices and bad practices Domain experts in IoT security and represented in machine readable data

formats or in natural language.
Modeling Framework (Vulnerability Subgraph)

Prioritization of security versus functionality System administrators and operators. Reasoning Framework

the entire configuration by F = (fl, f2, • • • , fk). At a high
level, we solve this constraint satisfaction problem (CSP):

Find configuration F* = (R,f1,...,R) such that:
1) Configuration subgraph constraints are satisfied
2) Dependency subgraph constraints are satisfied
3) F* = arg min impact(P)L_..PEA(F)

where P = (vi,... , vn) is any path in the vulnerability subgraph
A(F) induced by the configuration F.

In SCIBORG, F5 is obtained using a Satisfiability Modulo
Theory (SMT) solver. We will describe later how dependency
subgraph constraints and configuration subgraph constraints
are derived and provided as inputs to the solver. The solver
also takes as input the initial system configuration F, which
we can assume to correspond to parameter settings that put the
system in a working state, although not optimal with respect to
security or functionality. Our goal is to find a configuration that
improves the security and/or functionality. During the course
of solving the CSP, SCIBORG can encounter combinations of
constraints that cannot be simultaneously satisfied. Some of
the constraints therefore must be carefully relaxed. SCIBORG
performs this relaxation step-by-step according to a predefined
policy that balances security over functionality. For the exam-
ple in Fig. 6, the solver determines that debug_mode must be
set to false for both hA and hc.

V. SCIBORG DESIGN AND IMPLEMENTATION

Having described our technical approach, we now detail
SCIBORG's implementation, which includes (a) ingesting in-
formation about the configuration, functionality and potential
vulnerabilities of a distributed system; (b) using ingested infor-
mation to construct the multi-layer graph model described in
Section IV; (c) reasoning about the security and functionality
of possible configurations using a theorem prover; and (d) gen-
erating evidence that certain configurations improve security-
functionality tradeoffs, and guidance for constructing such
configurations. SCIBORG's architecture is shown in Fig. 7.

A. Data Ingestion Framework

To construct a graph-based model, SCIBORG ingests the
items listed in Table II from several information sources.
Depending on the type of information, system component, and
manufacturer or vendor, these items are available in different
data formats, including XML, HTML/CSS, JSON, and natu-
ral language. Consequently, data ingestion is semi-automatic,
with customized parsers for some components. For flexibility,
SCIBORG allows advanced users to visually create ingestion
data flows and comes equipped with ingestion mechanisms for

Configuration Flies

Requirements

Documentation

Data ingestion Framework

Validat on

Parsing I

 10 CZ=
Vulnerabilities info i0=1:11,

Updated so

Configuration
and Report

information I

extraction from
optimization

process

Graph-based

Visualization

Evidence Generatlon

Framework

Modeling Framework

Attack Subgraph

Dependency subgraph

_ Configuration subgraph

Security Performance

Metrics Metrics

impact Function

SMT-based Constrained
Optimization

Reasoning Framework

401

Fig. 7. Overall Architecture of Sciborg

Optional

User
input

components of interest (e.g., PFSense Firewall). These data
flows are primarily implemented in Apache NiFi8.

Ingesting configuration information. SCIBORG's data flows
extract configuration information, including the names of pa-
rameters, data types, default values, current values if available,
range of possible values, and free-form text descriptions.

Ingesting vulnerability information. SCIBORG distinguishes
three types of vulnerabilities: Type-1, software vulnerabilities
reported in vulnerability databases and identified by vulnera-
bility scanners; Type-2, per-component bad security practices,
currently specified by user input; and Type-3, not-best security
practices per component, also currently specified by user input.
For Type-1 vulnerabilities, we ingest relevant information
from NVD, including CVE ID, various CVSS v2 and v3
scores, access complexity, CWE category, and natural language
description. Additionally, we ingest information about the priv-
ileges that an attacker will gain by exploiting the vulnerability.
This information, combined with access complexity, allows
us to construct attack graphs in the downstream modeling
framework. SCIBORG provides a pluggable interface that
allows users, to define Type-2 and Type-3 vulnerabilities
on a per-component basis. Examples of Type-2 and Type-3
vulnerabilities are provided in Tables III and IV.

Ingesting dependency information: Information about depen-
dencies between components is extracted from two different
sources in SCIBORG: (i) direct user input, similar to ingestion
of Type-2 and Type-3 vulnerabilities, and (ii) third-party tools
such as NSDMiner [11] for discovering service dependencies
through traffic observation and call graph analysis. This infor-
mation is used to construct the dependency subgraph in the
downstream modeling framework.

Ingesting functionality requirements. SCIBORG distin-
guishes two classes of functionality requirements. The first

8https://nifi.apache.org/

Attack
Subgraph

Dependency
Subgraph

HAS_PAM

.1 Configuration Subgraph

parameters

constraints

OpenWRT1.firewall

OpenWRT1.system

#1 Abode Security Hub
•

',:916,9. Oa
,
•

•
0, f;/

soNe:
••.04

O,
• .• eeeee

• •

OpenWRT1.uhttpd

OpenWRT1.wireless

7:

, OpenWRT1.dhcp
♦ .

Fig. 8. (a) Semantics of the relationship among subgraphs, (b) partial view of the graphical model of the IoT testbed.

class is parameter range constraints specifying legitimate
ranges of values that can be assigned to parameters. Such
ranges are found by the configuration parameter information
extraction described above. The second class is functional-
ity and performance requirements, ingested from user input
through an interface. SCIBORG models such requirements
as constraints in the configuration space and allows users to
specify them using ingested parameter names as variables.
These constraints are specified in an SMTLIB-2.09 compliant
manner for efficient downstream reasoning by the Reasoning
Framework.

B. Modeling Framework

The SCIBORG Modeling Framework stores relationships
between system components, configuration parameters, config-
uration predicates, and vulnerabilities in a queryable, graph-
based form. It also provides an API to quantitatively eval-
uate the security of different system configurations using
topological vulnerability analysis. The modeling framework
is built on top of Neo4j19 and converts all ingested infor-
mation into a graphical format. The APIs providing security
evaluation and configuration impact analysis are implemented
as a Neo4j plugin that can (i) analyze attack scenarios (i.e.,
finite sequences of vulnerabilities that can be exploited by
an attacker), (ii) compute various attack surface metrics,
and (iii) asses the security impact of configuration changes.
Fig. 8(a) illustrates the semantics of the relationships between
the various subgraphs of our model. Fig. 8(b) shows part of
the graph corresponding to our testbed.

C. Reasoning Framework

The SCIBORG Reasoning Framework computes a new
configuration for the target system, across all components,
that minimizes security risk while preserving functionality. It
is written in Java with Microsoft Z311 as its solving engine.
To reason in the configuration space, SCIBORG constructs
a Constraint Satisfaction Problem (CSP) by querying the
modeling framework described in Section V-B. The variables
in the CSP correspond to unique names of nodes of the
model representing configuration parameters. In addition, the
CSP includes the following types of constraints derived from
the modeling framework: (1) CurrentConfig constraints, i.e.,

9http://smtlib.cs.uiowa.edu
lcIttps://neo4j.com
11https://github.com/Z3Prover/z3/wiki

predicates representing assignment of current values to system
parameters, (2) Functional constraints that include predicates
consisting of functionality requirements as discussed above,
(3) Security constraints of two kinds: (a) negation of pred-
icates that represent preconditions for Type-2 vulnerabilities
(i.e., bad security practices) and (b) predicates that represent
preconditions for enabling best security practices (i.e., prevent
Type-3 vulnerabilities). Once the CSP problem is formulated, it
is fed into Z3 to find a solution with values for each parameter.

SCIBORG assumes that the initial system configuration has
been at least partially tested for functional and non-functional
requirements, representing a reasonable starting point from
which to find optimal configurations; hence it uses Current-
Config constraints. In cases where the current configuration is
sub-optimal or violates security or functionality constraints,
SCIBORG makes necessary adjustments in the CSP, based
on the desired reasoning strategy, as described below. The
formulated CSP may not be satisfiable. In many cases, how-
ever, solvers can return the unsatisfiable core consisting of
a set of clauses whose conjunction is still unsatisfiable. If the
CSP is not satisfiable, we utilize unsatisfiable core information
along with constraint type and constraint impact information
(by querying the modeling framework) to form a new CSP,
by dropping certain clauses from the unsatisfiable core of the
previous CSP per SCIBORG's constraint relaxation strategy.
This operation is done for a number n of rounds until the CSP
is satisfied, the number of trials exceeds n, or the solver fails
to produce both the unsatisfiable core and a solution.

Constraint Relaxation Strategy. Our Reasoning Frame-
work can be configured to use one of three strategies in the
reasoning process: (1) Prioritize Functionality, (2) Prioritize
Security, and (3) No Priority. These strategies differ in the
way constraint relaxation occurs in the event of unsatisfiability
of a CSP formulated in a previous reasoning round. When
prioritizing functionality, SCIBORG forms the new CSP by
first removing constraints of type CurrentConfig that appear
in the unsatisfiable core of the previous CSP. If the problem
is still not satisfiable, it removes constraints of type Security
with the smallest security impact. When prioritizing security,
it forms the new CSP by first removing constraints of type
CurrentConfig that appear in the unsatisfiable core of the
previous CSR If the problem is still not satisfiable, SCIBORG
removes Functional constraints. Note that the recommended
configuration found under this mode may violate functional
requirements and therefore should not be used for deployment.
However, it is useful in analysis and to further understand the

system requirements and their trade-offs with security. When
operating in No Priority mode, SCIBORG removes constraints
of type CurrentConfig that appear in the unsatisfiable core
of the previous CSP. If the problem is still unsatisfiable,
SCIBORG just reports the unsatisfiable core and exits.

D. Evidence Generation Framework

The Evidence Generation Framework provides graph-based
visualizations and human-readable text describing the opti-
mality of the computed configuration. It collects reasoning
artifacts, including unsatisfiable cores associated with each rea-
soning rounds, dropped clauses and their impact, description
of vulnerabilities that have been addressed or are outstanding,
and renders them in different formats (e.g., PDF).

VI. SCIBORG EVALUATION

A. SCIBORG Evaluation Testbed

To evaluate SCIBORG, we built a physical testbed, which
includes IoT devices, a mock office Information Technology
(IT) environment with virtualized servers and PCs, test harness
software to sense and actuate IT and IoT components, and
logging facilities. The test harness software runs predefined
scenarios that actuate experimental-plane components and read
their state to determine if the experimental system is still
operating as required after configuration changes. The IoT
components form two sets, a Consumer-IoT set, and an In-
dustrial Control System-IoT (ICS-IoT) set. The IoT devices
were selected to: (i) cover a breadth of configuration space
elements, from minimally configurable (e.g., Wi-Fi light bulb)
to extensively configurable (e.g., Wi-Fi router); (ii) range from
highly dependent on an internet connection and cloud ser-
vices (e.g., Abode Security Hub) to fully self-contained (e.g.,
BrewPi); (iii) span different physical connectivity methods (Wi-
Fi, Ethernet, Z-Wave); (iv) include both direct physical effects
(e.g., light, temperature, motion) and networked effects (e.g.,
network segmentation, internet connectivity); (v) consist of
commercially-available and/or open-source off-the-shelf sys-
tems, for reproducibility. The office IT environment comprises
computer systems and servers typically found in corporate IT
networks, some of which may interact with IoT devices and
be critical to their operation. They were chosen to represent a
realistic IoT environment that interacts with and depends on
traditional IT systems. The components are instrumented with
out-of-band sensors to provide ground truth as to their current
state (light on/off, door locked/unlocked, etc.). Thus, the actual
state of the system can be ascertained throughout experiments,
regardless of the reported state on the experiment plane (due
to misconfiguration, attacks, etc.). Fig. 9(a) shows the instru-
mented Consumer-IoT components with sensors and actuators
attached. The topology of the testbed is shown in Fig. 9(b).
To use the testbed, the experimenter configures the devices
according to an experiment plan and launches a scenario using
the web interface. A scenario drives the test harness software
through a series of steps and validates that the IoT devices and
emulated IT systems are operating as expected. This allows
us to test whether SCIBORG's recommended configuration
changes break functional requirements.

=rpm 11E
it-mitZ

(a) (b)

Fig. 9. (a) IoT testbed and (b) testbed network topology.
TABLE III. TYPE-2 VULNERABILITIES

Type-2 Vulnerability Testbed Component
Enabling packet forwarding by default OpenWRT Firewall
Allowing all protocols from WAN to LAN OpenWRT Firewall
Enabling packet forwarding by default OpenWRT Firewall
Disabling Tamper Siren Security Hub
Setting alarm duration to 0 Security Hub
Silencing all gateway sounds Security Hub
Using default or no password Open Sprinlder
Bypassing password check Open Sprinkler
Allowing App Installation from Unknown Sources Tablet
Enabling DDNS for a normal IoT device IP Camera
Disabling watermark IP Camera
Having short watermark characters IP Camera
Disabling Login Failure Monitoring IP Camera
Disabling Network Disconnect Monitoring IP Camera
Disabling IP Conflict Monitoring IP Camera
Disabling anti-lockout mle PFSense Firewall

B. Evaluating SCIBORG on Testbed

As discussed before, SCIBORG ingests information about
testbed components, their configuration parameters, and sys-
tem requirements from various sources. We ingest vulnerability
information by running openVAS scanner from different net-
work segments of the testbed and cross referencing the found
components and vulnerabilities with NVD using our own tools.
In addition, we ingest per-component bad security practices
and best security practices from user input.

Overall, SCIBORG reasoned on 5,460 vulnerabilities,
1,188 configuration parameters, and 43 components (including
subcomponents). On average, it took SCIBORG 3 minutes and
14 seconds to populate a graphical model based on ingested
data using a MacBook Pro laptop and an additional 14 minutes
and 4 seconds to compute an improved configuration by
reasoning on it. SCIBORG executed 433 rounds of reasoning
to come up with the new configuration for the entire system
under its Prioritize Functionality reasoning strategy. In every
unsatisfied reasoning round, SCIBORG reformulated the cor-
responding constraint satisfaction problem by evaluating the
impact of the constraints of the unsatisfiable core for that
round as described in Section V. The SCIBORG evidence
generation framework summarizes the constraints that cause
unsatisfiability as well as their impact, giving the user full
visibility into the compositional security analysis.

As expected, the most challenging part of using SCIBORG
is the ingestion process. We make this task easier by providing
(1) customized ingestion tools for common components (e.g.,
pfSense Firewall), and (2) a reusable library of Apache NiFi
data ingestion flow templates. While this is helpful, we plan
to apply machine learning and language processing techniques
to further automate ingestion.

TABLE IV. TYPE-3 VULNERABILITIES

Type-3 Vulnerability Testbed Component
Having (a potentially unnecessary) firewall rule en-
abled (in a default deny setting)

PFSense Firewall

Disabling protection against DNS Rebinding attacks PFSense Firewall
Disabling logging for successful log-in attempts PFSense Firewall
Allowing login by-pass PFSense Firewall
Disabling protection against HTTP REFERER attacks PFSense Firewall
Not using HTTPS PFSense Firewall
Disabling Logging Open Sprinkler
Having High Login Failure Threshold IP Camera
Disabling Illegal Access Email Alerts IP Camera
Having Long Illegal Access Alarm RelayOut Delay IP Camera
Disabling Illegal Access Alarm RelayOut IP Camera
Disabling remotely locating the device Tablet
Using no API password Home Assistant

VII. RELATED WORK

The state of the art in configuration security focuses
narrowly on the configuration parameters of individual system
components and so lacks a principled approach to coping with
the complex relationships among the configuration parameters
in a complex composed system. As a consequence, most of
the existing approaches for solving configuration errors cannot
tackle errors involving cross-component dependencies [18], let
alone address the security implications of such dependencies.
Cross-component errors are common [10] and may result in
service disruptions that are costly to identify and address.
This issue becomes more critical for complex systems where
independent teams develop each component. Malicious actors
are likely to use such configuration dependencies, along-
side system vulnerabilities, to create context-aware Advanced
Persistent Threats (APTs). To address this issue, we model
a composed system as a multi-graph that captures interde-
pendencies and provides insight into security optimization.
This model finds the optimal configuration that adequately
reduces the attack surface while ensuring that configuration
and functionality constraints are satisfied.

Assessing the impact of attacks on a system requires defin-
ing its attack surface [16]. An attack metric should accurately
consider all attack paths by conducting an in-depth analysis of
each path's entry and exit points, implicit and explicit interde-
pendencies, and vulnerabilities [1]. The approach in [9] enu-
merates reachable elements, but, while showing that systems
with fewer vulnerabilities are more secure, it does not account
for the cascading effects of these elements on the system if
compromised. Manadhata and Wing developed an entry/exit-
point framework, which considers the methods, channels, and
data items of a system, also known as resources. Intuitively,
their work implies that a larger attack surface makes a system
less secure. However, a larger attack surface is not necessarily
more vulnerable than a smaller one [5]. Past literature narrowly
measures attack surface either through an attacker-centric ap-
proach [14] or a system-centric approach [9]. However, using
these limited approaches produces an incomplete view of the
overall system security posture. To address these limitations,
we assess a system's attack surface based on an in-depth
analysis of the impact of each multi-step attack, considering
the complex interdependencies among system components,
vulnerabilities, and configuration parameters.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

To our knowledge, SCIBORG is the first system to address
security misconfigurations in networked distributed systems.

It builds a graph-based model that captures relationships
among system vulnerabilities, configuration parameters, and
system components by ingesting information from multiple
sources (e.g., documentation, configuration files, vulnerabil-
ity databases). Using this model, SCIBORG formulates a
constraint satisfaction problem and solves it to improve the
configuration.

Future plans include further automating the ingestion pro-
cess and improving SMT solver performance. The automation
effort will involve integrating with configuration management
systems, investigating annotation of configuration files, and
applying machine learning and natural language processing
to extract additional relationships among system components,
configuration parameters, and vulnerabilities.

REFERENCES

[1] M. Albanese and S. Jajodia. A graphical model to assess the impact
of multi-step attacks. Journal of Defense Modeling and Simulation,
15(1):79-93, January 2018.

[2] M. Albanese, A. Pugliese, and V. Subrahmanian. Fast activity detection:
Indexing for temporal stochastic automaton-based activity models.
IEEE TKDE, 25(2):360-73, February 2013.

[3] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based
network vulnerability analysis. In Proc. of ACM CCS 2002, pages
217-224, Washington, DC, USA, November 2002.

[4] P. Bahl, P. Barham, R. Black, R. Chandra, M. Goldszmidt, R. Isaacs,
S. Kandula, L. Li, J. MacCormick, D. Maltz, R. Mortier, M. Wawrzo-
niak, and M. Zhang. Discovering dependencies for network manage-
ment. In Proc. of ACM HotNets-V, Irvine, CA, USA, November 2006.
ACM.

S. M. Bellovin. Attack surfaces. IEEE Security & Privacy, 14(3):88-88,
May 2016.

[6] S. Jajodia, S. Noel, and B. O'Berry. Managing Cyber Threats: Issues,
Approaches, and Challenges, volume 5 of Massive Computing, chapter
Topological Analysis of Network Attack Vulnerability. Springer, 2005.

N. Kourtellis, G. De Francisci Morales, and F. Bonchi. Scalable
online betweenness centrality in evolving graphs. IEEE Transactions
on Knowledge and Data Engineering, 27(9):2494-2506, April 2015.

[8] D. J. Leversage and E. J. Byres. Estimating a system's mean time-to-
compromise. IEEE Security & Privacy, 6(1):52-60, Jan./Feb. 2008.

P. K. Manadhata and J. M. Wing. An attack surface metric. IEEE
Transactions on Software Engineering, 37(3):371-386, May 2011.

[10] Matt-Welsh. What I wish systems researchers would work on. Volatile
and Decentralized, May 2013.

[11] A. Natrajan, P. Ning, Y. Liu, S. Jajodia, and S. E. Hutchinson.
NSDMiner: Automated discovery of network service dependencies. In
Proc. of IEEE INFOCOM 2012, Orlando, FL, USA, 2012. IEEE.

[12] OWASP. Owasp top 10 - 2017: The ten most critical web application
security risks. Technical report, The OWASP Foundation, 2017.

[13] B. G. Ryder. Constructing the call graph of a program. IEEE
Transactions on Software Engineering, SE-5(3):216-226, May 1979.

[14] B. Schneier. Secrets and Lies: Digital Security in a Networked World,
chapter Attack Trees, pages 318-333. John Wiley & Sons, 2015.

[15] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
generation and analysis of attack graphs. In Proc. of IEEE S&P 2002,
pages 273-284, Berkeley, CA, USA, May 2002.

[16] C. Theisena, N. Munaiahb, M. Al-Zyoudc, J. C. Carver, A. Meneely,
and L. Williams. Attack surface definitions: A systematic literature
review. Information and Software Tech., 104:94-103, Dec. 2018.

[17] S. Venkatesan, M. Albanese, and S. Jajodia. Disrupting stealthy botnets
through strategic placement of detectors. In Proc. of IEEE CNS 2015,
pages 55-63, Florence, Italy, September 2015. IEEE.

[18] T. Xu and Y. Zhou. Systems approaches to tackling configuration errors:
A survey. ACM Computing Surveys, 47(4), July 2015.

[5]

[7]

[9]

