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Abstract— Laser distance sensors such as LIDAR are useful
for many outdoor robotic vehicles, but their high cost and
complexity precludes their use in low-cost applications, while
other low-cost depth sensing technologies are not suitable for
outdoor use. We present a low-cost, smartphone-based planar
laser distance sensor design for outdoor use with 6 cm accuracy
at 5 meters, 30 Hz scan rate, and 0.1 degree resolution over
the field of view. The cost of the hardware additions to the
off-the-shelf smartphone used in our prototype is under $50.

I. INTRODUCTION

Mobile robots must avoid obstacles when navigating an
environment. This is typically done with a laser distance
sensor (LDS), which is also often used for localization and
mapping [20], [1]. Work on passive camera-based systems
can eliminate the need for expensive LDS devices, such as
LIDAR, for localization [21], but an LDS is still useful for
reliable obstacle detection and avoidance. The high cost and
complexity of LDS devices, however, has precluded their use
for low-cost applications and handheld use.

We present Smartphone LDS, a low-cost multi-point laser
distance sensor, based on a smartphone, that works outdoors.
It is designed to leverage off-the-shelf components and the
rapid improvement and proliferation of phones with low-
cost, high performance image capture and processing. Our
prototype, shown in Figure 1, combines a phone with an off-
the-shelf line laser module, and leverages the phone’s cam-
era, processor, and input/output to simultaneously measure
multiple distances across a planar field-of-view. By utilizing
the processing power of the phone, we can perform more
intensive image processing to identify the laser illumination
and reject ambient light, improving performance for outdoor
use. Our sensor has the characteristics shown in Table I. To
our knowledge, there is no other outdoor 2D laser distance
sensor that combines a low-cost laser illumination source
with computer vision-based image processing techniques.

Smartphones are increasingly pervasive, and are continu-
ously and rapidly increasing in computing power and sensing
capability. This has not gone unnoticed in the robotics
community: even Robot Operating System (ROS) is available
on Android [12], developed by Google and Willow Garage.

Compared to the typical laser distance sensors utilized in
autonomous outdoor robots, smartphones are also low cost:
the Android phone used in our system, a Nexus 5, has an
original retail price of $349, and the hardware additions for
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Fig. 1: Smartphone LDS with major components labeled.
United States quarter for size comparison.

TABLE I: Smartphone LDS Characteristics

Works in sunny outdoor conditions under strong ambient light
Solid-state design with no moving parts
Field-of-view of 48 degrees (dependent on camera and laser lens)
Returns range readings up to 2m in direct sunlight, 5.8m indoors
Fast: 14400 readings / second (480 simultaneous readings at 30 Hz)
High minimum angular resolution of 0.1057 degrees
6 cm range error at 5 m
Low cost: Leverages pervasive smartphones &
inexpensive off-the-shelf components
Eye-safe

our prototype cost less than $50, as shown in Table II. We
believe the additional hardware costs can be significantly
reduced in mass production. Thus, adding high-resolution
distance sensing to the phone enables a complete robotics
platform, including the laser distance sensing and ROS
software environment that many researchers are accustomed
to, at low cost and in a mobile form factor.

A phone-based LDS enables many applications that were
not previously possible, due to its pervasive deployment and
low cost. In Section IV, we evaluate our system in the
scenario of obstacle detection and avoidance in autonomous
vehicles. Other potential applications include obstacle avoid-
ance on lightweight personal mobility vehicles, 3D scanning
with phones, navigational aids for the visually impaired
through smartphone apps and small autonomous robots uti-
lizing advanced localization and mapping algorithms de-
signed for laser distance sensors.



TABLE II: Smartphone LDS Cost Breakdown

Nexus 5 smartphone $349
Optical bandpass filter $13
Line laser $22
Control electronics $12
3D-printed mount $2
Total of hardware additions $49
Total including smartphone $398

There are several distinguishing characteristics of our
design from prior work on low-cost laser distance sensors
such as the Revo LDS [13] by Konolige et al. In particular,
our design:

• Works outdoors, as shown in our evaluation in direct
sunlight in Section IV-A. We tested the Revo LDS
design outdoors by extracting the unit from a Neato
XV-11 robotic vacuum cleaner, and were unable to
obtain range measurements beyond half a meter when
the target surface was illuminated by direct sunlight.
The Revo LDS utilizes bandpass filtering and temporal
synchronization of the laser illumination with a global
shutter CMOS image sensor to reject ambient light, but
sunlight is still too strong for it to reliably discriminate
the laser light. Our design modulates the laser illumi-
nation and leverages relatively powerful heterogenous
processing cores on smartphones to perform image-
processing across multiple camera frames, improving
ambient light rejection.

• Has a solid-state design with no moving parts. This
makes it lower-cost and more suitable for handheld
and/or consumer applications, with simple assembly, no
gyroscopic effect from spinning parts, and no moving
parts to break or wear out. This is unlike other laser
distance sensors that typically use a spinning mirror or
electronics to scan the laser and take measurements.

• Exploits silicon advances readily. Smartphones are
pervasive, and have been rapidly increasing in com-
puting power and camera performance. This means the
performance of the system design will improve, and
only relatively simple hardware modifications / attach-
ments to the phone are required. For example, better
cameras and processors in newer phones will improve
the throughput, range resolution, angular resolution, and
detection latency and/or lower cost.

II. BACKGROUND AND RELATED WORKS

Addressing the general problem of distance sensing is
important for mobile robots that must navigate unstructured
environments. We discuss several typical approaches below:

• Laser distance sensors such as LIDAR have the ad-
vantage of high spatial resolution, allowing robots to
discriminate between multiple types and sizes of obsta-
cles, but its cost is prohibitive for lower-cost systems
due to the need for high-speed circuitry for accurate
time-of-flight ranging, high-powered laser diodes and

photodetectors, and electromechanical components to
scan the optics over the field of view.

• Stereo-vision has the advantage of not requiring active
illumination, but relies on complicated and intensive
computation, and performs poorly in environments that
have surfaces lacking textures for the stereo correspon-
dence algorithm to exploit.

• Ultrasound is low cost and commonly used on small
mobile robots, but suffers from low range and low
spatial resolution [2] that is inadequate for object dis-
crimination and classification.

• Radar has the advantage of measuring an object’s rela-
tive speed to the sensor in real-time by leveraging the
doppler shift effect, but also suffers from poor spatial
resolution across the field of view and high cost.

Our design’s key contribution is that it is low-cost and
works outdoors in sunlight. We use an active triangulation
approach. Below, we discuss several related approaches in
other active illumination distance sensors.

• Pulsed Time-of-Flight (ToF). Systems operating under
this principle constitute what is typically considered
LIDAR, and include devices such as the SICK LMS 291
and Velodyne 3D LIDAR sensors [7] that are often used
in autonomous vehicles research. ToF sensors emit a
very short, high-power laser pulse, and measure the time
it takes to detect its reflection from a distant surface.
The high-power lasers, sensitive photodetectors, high-
speed electronics, and scanning optics found in these
systems result in prohibitively high cost. Kimoto et.
al. [11] developed a 3D LIDAR that is relatively low-
cost compared to 3D LIDARs by adding a resonant
mirror to a 2D LIDAR, but it still requires moving
components and is high cost compared to our approach.

• Modulated light Time-of-Flight. SoftKinetic [4] and
Kinect for Xbox One [17] both emit high-frequency
(10s of MHz) modulated light and measure the phase
shift of the return signal due to the time of flight to
provide a 3D depth image. However, their ambient
light rejection is not strong enough for outdoors use
due to the wide divergence of illumination energy
both horizontally and vertically. These approaches also
require specialized CMOS imagers and control circuitry
in order to capture and process signals at high speed.

• Structured light. Several commercially available depth
sensors utilize structured light, measuring distortions
in a projected pattern to determine depth, including
Google Project Tango [9] and the original Kinect [10].
Similarly to the modulated light sensors above, they do
not perform well outdoors due to ambient light quickly
overpowering the sensor’s illumination as the energy
diffuses in both directions.

• Active stereovision. Intel’s RealSense R200 [3] is a
compact stereovision depth camera that utilizes pat-
terned illumination to project noise and improve perfor-
mance on surfaces lacking textures indoors. It requires
a relatively powerful computer, however, and customers



report that it does not perform well outdoors [22].
• Active triangulation. Our design falls under this cate-

gory of sensors, which use an illumination source and
an arrayed image sensor to locate reflected illumination
in the image and calculate the distance. Such systems
have similar challenges detecting the active illumination
in ambient light, which we address in our design.

Our system is novel in its use of line laser modulation,
image processing, and the full use of a 2D image sensor to
enable compact, low-cost 2D outdoor laser distance sensing
with no moving parts. Our line laser beam diverges in only
one axis, maintaining illumination flux at longer distances
compared to depth cameras with illumination that diverges in
two axes. Other laser distances sensors achieve greater ranges
with highly-collimated beams that do not diverge in either
axis, at the cost of requiring mechanical scanning, which
increases cost and is contrary to our goal. To improve our
range performance, we temporally modulate our illumination
to increase ambient light rejection.

The Revo LDS [13] is similarly low-cost and also uses
active triangulation, but mechanically scans its single-point
sensor over the field of view and does not perform well
outdoors (Section IV-A). Our design samples multiple points
simultaneously without moving parts. Quigley et. al. [18]
also use a line laser for active triangulation, but the system
is not suitable for outdoor use.

III. RANGEFINDER DESIGN

Our system is an outdoor, active-triangulation laser dis-
tance sensor. It consists of an illuminator and a detector
separated by a baseline distance. The illuminator is a laser
module with a line lens, and projects a horizontal beam of
laser light into the scene. The detector is the camera on
the off-the-shelf Android smartphone, capturing images to
be processed by the phone’s processors (CPU and GPU).

The vertical baseline distance between the camera and
the line laser emitter causes laser illumination reflected off
objects in the scene to be detected at different vertical
positions across the image plane of the camera, depending on
the distance to the illuminated object. Thus, each column of
pixels in the image corresponds to one measurement within
the field-of-view, and we can simultaneously take as many
measurements as there are columns of pixels (480 in our
prototype, as discussed in Section III-B).

These major components of our system are shown in
Figure 1, while a detailed diagram of the hardware and
software components of our system is shown in Figure 4.

A. Challenges

There are several competing demands on this system:
• Eye safety. The laser needs to be eye-safe due to its

outdoor operation, which limits its output power and
the maximum range of detection.

• Processing performance. The sensor needs to perform
image processing from the camera to distinguish the
signal of interest (the line laser return) from the back-
ground (other objects in the scene, background radiation
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Fig. 2: Total processing time per frame by our app versus
image resolution.

from the sun, etc.). This processing needs to be done in
real-time on a low-cost device.

• Sensing fidelity. We have limitations on camera frame
rate, dynamic range, and electronic rolling shutter (due
to the CMOS image sensor in the phone).

We discuss the impact of possible improvements to our
system in Section V.

B. Design Criteria and Characteristics

Because our design leverages several off-the-shelf compo-
nents, our design must consider the properties of the system
that we cannot change:

• Phone processor performance. Figure 2 shows the per-
frame total processing time of our image processing
kernels versus image resolution. Running at the full
frame rate of the camera (30 fps) gives us 33.33 ms to
process each frame, so we capture images at 640x480
pixels resolution, down-sampled from the full resolution
of the camera, to stay within the limits of the phone’s
compute performance.

• Camera frame rate. The maximum frame rate of the
camera is 30 frames per second.

• Camera sensor physical characteristics. The camera
on the Nexus 5 phone has a focal length of 3.97 mm
and physical sensor dimensions of 4.6032 by 3.5168
mm, as reported by the Android Camera2 API. As we
are using the longer dimension of the sensor to localize
the laser illumination along, each pixel in the down-
sampled image corresponds to a physical distance on
the sensor of 0.0072 mm.

• Available baseline separation. The size of the phone
provides a lower bound on the size of the overall system,
but an overly large baseline will result in a large system.

The triangulation geometry described in Konolige et al. for
the Revo LDS also applies to our system, with perpendicular
distance to an object from the baseline separation as

q =
fs

x
(1)

with x the position of the reflected laser illumination on the
CMOS imager. To enable comparison of our Smartphone
LDS to Revo LDS, we wish to achieve an fs product
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Fig. 3: Geometry of angle to object. The angle θ is calculated
from the y position of the laser illumination in the image.

comparable to the fs = 800 of [13], and thus must maximize
our baseline separation, as our focal length is fixed and
smaller than that of the Revo LDS. We choose our baseline
separation to be 155mm, slightly longer than the length of
the phone, in order to keep the system compact, with the
laser attached rigidly to the phone via a 3D-printed mount.
The resultant fs ≈ 615 provides us with comparable range
resolution, minimum distance, and size as the Revo LDS.

To provide readings across the field of view, we use
the narrower vertical dimension of the image sensor to
triangulate the laser light at multiple angles simultaneously.
Equation 2 gives the position y of the laser illumination on
the image sensor, and

tan θ =
y

f
(2)

Thus, our angular sensitivity is dependent on the position y
on the image sensor and the physical camera characteristics:

dθ

dy
=

f

f2 + y2
(3)

where dy is the width of a pixel: 3.5168 mm / 480 pixels.
Angular resolution is lowest in the center of the field of view,
with an angular resolution of 0.1057 degrees, and highest at
the edge, with an angular resolution of 0.09513 degrees.

C. Ambient Light Rejection

Typically, the use of a line laser will result in the laser
energy being spread out over the line, making it difficult
to detect the reflected illumination at longer distances. We
add a 20nm bandpass filter to reduce most of the ambient
light flux. We also modulate the laser and perform additional
processing on the phone to further reject ambient light.

The modulation of the laser is controlled by the smart-
phone through a microcontroller connected via the Android
USB Host API. The laser is pulsed on alternate frames. Due
to the electronic rolling shutter on the camera, the laser pulse
must last for the entire frame capture duration of 1/30 s,
rather than just the image exposure time.

The app tracks per-pixel luminosity transitions between
frames and counts how many occur on-off or off-on as
expected from knowledge of the laser pulse modulation.
When the number of matched transitions detected reaches
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Fig. 4: Block diagram of hardware and software components.

a threshold (4 in our experiments), the pixel is tagged as
having the modulated laser illumination present. Requiring a
number of matched transitions imposes a latency penalty of
threshold/framerate seconds before a new range reading
can be detected. A threshold of 4 imposes a latency of 0.133
seconds, comparable to that of the Revo LDS, which cannot
detect an object’s distance until it has physically scanned
across it. At a 5 Hz scan rate, the latency of the Revo LDS
can range from 0 to 0.2 seconds.

This algorithm provides good rejection of ambient noise;
Figure 5 shows the input image on the right, and the detected
laser illumination on the left, highlighted by the blue boxes.
The phone is able to process images at 30 Hz, the maximum
framerate of the camera. The image processing is accelerated
on the CPU and GPU through the use of RenderScript,
Android’s parallel computing framework.

D. Eye-Safety

To prevent distraction to passers-by during our outdoors
and vehicle experiments, we chose to use a non-visible
wavelength of 780 nm for the illumination. and removed the
infrared cut-off filter from the smartphone camera. We add a
20 nm optical bandpass filter to further reduce ambient light,
as discussed above. The 100 mW line laser is effectively
pulsed at 15 Hz with a 50% duty cycle. The lowest Maximum
Permissible Exposure (MPE) is 5.8× 10−5J/cm2 given by

Fig. 5: Right: input image. Left: algorithm output.



the equation for a repetitively pulsed laser [5]:

1.8Cat
0.75 × 10−3

n1/4
(4)

where Ca = 102(0.78−0.7), t = 1/30s, and n = 150 pulses
in 10 s (natural motion of the eye). The power absorbed
by the retina if looking directly into the laser beam falls
off quickly with distance due to the very wide 60 degree
horizontal divergence. For safety, we assume all of the energy
within the vertical divergence of the beam falls on the retina
of the eye and we do not include energy loss through the
air. Thus, the minimum eye safe distance or Nominal Ocular
Hazard Distance (NOHD) at which the MPE is not exceeded
is 1.45 m, given by:

A×MPE = Pt
w

2D tan(divergence/2)
(5)

where A = 0.385cm2 is the area of the pupil, P is the pulse
power, D is the NOHD, and w = 0.7cm is the pupil width
(with all of the beam’s vertical width falling on the pupil).

There are multiple ways to accomplish this: the system
can include an interlock mechanism that reduces the power
or disables the laser when a closer object is detected, or
for integration into larger systems such as vehicles, a phys-
ical shroud around the system can prevent exposure closer
than the NOHD. Alternatively, with global shutter sensors,
which are becoming available in commodity smartphones
(Section V), the pulse duration could be reduced from 33.33
ms to the exposure time of 3 ms, increasing the MPE by
5.6x, reducing NOHD to 0.26 m.

E. Laser Line Localization

To localize the laser line within the image, we first
gaussian blur the image to spread out saturated pixels and
reduce noise to better locate the center of the line in each
column of pixels, and then interpolate the image of the line
2x to improve subpixel accuracy along each column. The
interpolation is limited by the processing time of our unop-
timized prototype software, and affects our range resolution
at longer distances. Figure 6 shows total image processing
time for other interpolation factors at an input resolution
of 640x480. After interpolation, we find the center of the
laser light in the row using the maximum value. Finally, to
improve the subpixel localization accuracy, we calculate the
centroid with the 8 neighboring pixels on each side of the
center.
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Fig. 6: Total processing time per frame vs. interpolation.

F. Calibration

The range errors of the system primarily come from:

• The angle between the laser and the camera. This
comes from inaccuracy in the 3d-printed mount, inac-
curacy of the low-cost line laser diode alignment, and
misalignment and distortion from the line lens on the
laser. Due to the use of a line laser with a slightly
greater horizontal divergence than the field-of-view of
our camera, the system can tolerate misalignment (up
to +/- 6 degrees) of the laser within the plane of the
emitted line, as a rotation of the laser within that plane
still results in pixels across the field-of-view being
illuminated with reflected laser light. We rely on manual
alignment of laser module around its longitudinal axis
and perform a single calibration that is applied to all
rays, but a per-ray error calibration would better reduce
systematic error across the field of view.

• Residual lens distortion. The known lens distortion is
corrected for by Android’s camera software subsystem,
but there may be residual distortion due to manufactur-
ing and alignment variation in the camera module.

Similarly to [13], we address these errors by calibrating a
1/x curve fit (Figure 7) between our localized laser positions
in the raw image and the distance to a white (greater than
90% reflectivity) calibration target, with more weight given
to longer distances because the higher slope results in greatly
magnified localization errors. We use an LDS from a Neato
XV-11, which is based on the device from [13], to provide
our baseline of known distances. The curve fit is imperfect,
and errors remain after calibration, shown in Figure 8. To
correct for remaining error, we use table of offsets from the
actual distance, applied with interpolation above distances of
1.0 m, which eliminates the effects of calibration errors, but
subsequent mechanical flex of the 3d-printed mount could
cause further calibration errors to manifest.

0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

0	   50	   100	   150	   200	   250	   300	   350	   400	  

M
et
er
s	  

Raw	  Image	  Value	  

1/x	  Curve	  Fit	  

Data	  Values	  

1/x	  Curve	  Fit	  

Fig. 7: Calibration readings and 1/x curve fit.
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IV. PERFORMANCE EVALUATION

We evaluated our phone-based laser distance sensor by
first characterizing its distance sensing performance out-
doors, and then characterizing the system in an example
application scenario: obstacle detection for an outdoor au-
tonomous vehicle.

A. Outdoor Distance Sensing Evaluation

We tested Smartphone LDS outdoors by mounting it next
to the XV-11 device, depicted in Figure 9, and measured
range error vs. distance for white targets (90% reflectance)
and black targets (10% reflectance) under the following
scenarios:

• Outdoors, with target surface shaded from sunlight.
• Outdoors, with target surface under direct sunlight.
Figure 10 shows the maximum range achieved by each

system outdoors in our measurements. Smartphone LDS is
consistently able to detect further targets than the XV-11.

Figure 11a shows the total error for white and grey targets.
We also include the measurements from the calibration

Fig. 9: Experimental setup of Smartphone LDS vs. XV-11.
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Fig. 10: Maximum range distance comparison.

for comparison, performed indoors with a white target.
Figure 11b shows the XV-11 unit tested under the same
conditions for comparison, but we do not have the calibration
data for it. Measured errors are comparable to those in [13].

Our standard deviation error remains under 10 mm indoors
for all ranges, and under 2 mm outdoors to 1 meter. At 3
meters, Smartphone LDS was unable to detect targets under
direct sunlight.

Smartphone LDS was also unable to obtain range readings
at 0.25 m for black targets: the low reflectance combined
with undesirable vignetting at the edge of the image caused
by our undersized off-the-shelf bandpass filter such that the
system could not find bright enough reflected laser light. In
our outdoor scenarios, there was unintentional movement of
the targets due to wind and hand movements contributing to
standard deviation error for both devices.

B. Obstacle Detection Evaluation

We also evaluate our system in an example scenario
of obstacle detection for a low-speed autonomous vehicle,
mounting it on the front bumper of the testbed vehicle in [1]
that is also equipped with a SICK LMS 291 LIDAR sensor,
used as a baseline. The LMS 291 provides a 180 degree
field of view, performing measurements at 75 Hz with 10
mm range resolution, +/- 15 mm range accuracy, and 0.25
degree angular resolution. The range of the LMS 291 and
other similar laser distance sensors is many tens of meters,
an order of magnitude more than our sensor’s range, putting
them in a different class in both cost and performance. Even
with a much more limited range, our sensor is still useful
for obstacle detection for low-speed autonomous vehicles,
and/or for other low-cost mobile robots where the cost of a
sensor like the LMS 291 is prohibitive.

Thus, we evaluated the system in three common obstacle
avoidance scenarios, illustrated in Figure 13.

1) Obstacle (pedestrian) moving towards and away from
front of vehicle.

2) Obstacle (pedestrian) crossing in front of vehicle.
3) Vehicle moving towards and away from stationary

object (cardboard box).
Table III shows the minimum distance (out of 5 trials)

at which each object was detected by any one of the 2D
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Fig. 11: Total error comparison.

measurements across the field of view. We assume instanta-
neous braking upon detection at a comfortable deceleration
of a = 3.4m/s2 for collision avoidance [14]. The detection
distance is our available braking distance, and Equation 6,
relating stopping distance and constant deceleration, gives
the maximum vehicle speeds at which a collision can still
be avoided (Table III).

v =
√
2ad (6)

In our experiments, there was significant rolling shutter
distortion and vibration in the image due to vibration of
the vehicle, to which Smartphone LDS was rigidly attached,
which impaired transition detection and significantly reduced
the range compared to Section IV-A. In comparison, the LMS
291 was able to detect the obstacle at all distances tested.
However, Smartphone LDS is still able to provide sufficient
performance for obstacle avoidance at speeds ranging from
14.8 to 18.5 km/h in the scenarios.

TABLE III: Stopping Distance and Corresponding Speed

Scenario Detection distance Collision can be avoided under
1 2.5 m 14.8 km/h (4.1 m/s)
2 2.8 m 15.7 km/h (4.4 m/s)
3 3.9 m 18.5 km/h (5.1 m/s)

V. DISCUSSION AND CONCLUSION

Our range resolution, angular resolution, maximum range,
and detection latency are limited by the performance of

Fig. 12: Vehicular mount for system and experimental setup.

the camera sensor and processor performance. The rapid
improvement of mobile cameras and processors is the key
motivation behind the design of Smartphone LDS, and we
discuss the potential improvements that could be realized.

A. Smartphone camera

The CMOS image sensor on the Nexus 5 constrained some
aspects of our system performance. To improve it, we could
use sensors with the following features beyond the limits of
the Android device with:

• Global shutter. A global shutter would allow reduc-
ing our laser pulse duration from the rolling shutter
duration, 33.3 ms, to the exposure time, typically 0.5
to 3 ms. This improves range by allowing shorter and
stronger laser pulses and/or improved eye-safety haz-
ard distance. Global shutter sensors targeting computer
vision are beginning to appear in mobile devices [16],
such as the Amazon Fire Phone [15].

• High frame-rate. This reduces detection latency and
improves rejection of other periodic signals that might
naturally occur in the scene. Many newer phone cameras
already support high frame-rates up to 240 frames per
second, a 12x improvement, and our exposure time is
already low enough to allow these high frame-rates.
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Fig. 13: Diagram of obstacle avoidance scenarios.



• High dynamic-range. This prevents sensor saturation
by ambient light such that the laser illumination is not
detectable, while still allowing us to detect weak laser
reflections at long range or on low-reflectance surfaces.

B. Smartphone processor

Our input image resolution (640 x 480) is well below
the full sensor resolution (3264 x 2448) due to processing
bottlenecks, limiting range resolution and angular resolution.
Compared to the Nexus 5, the recent Snapdragon 810 has
113% more CPU performance [8] for a parallelized So-
bel kernel (representative of our kernels), and 280% more
GPGPU performance [19]. Since our image processing is
already written as highly parallelized kernels, we estimate
that we could at least double the image processing resolution
in each dimension, doubling minimum angular resolution to
0.05287 degrees as in Equation 3 and doubling range resolu-
tion dq by halving dx in the range sensitivity equation [13]:

dq

dx
=
q2

fs
(7)

C. Security

Attacks that replay recorded laser illumination have been
demonstrated on commercial LIDAR systems [6]. Smart-
phone LDS controls the laser modulation on a per-frame
basis, so it could use an unpredictable/pseudorandom mod-
ulation sequence (with sequence length affecting latency as
in Section III-C), providing a defense against maliciously
replayed laser illumination.

D. 3D distance ranging and multi-user ranging

Using an alternate modulation sequence could also enable
discrimination of multiple lasers in the field-of-view, en-
abling multiple planes of depth to be sampled, similar to a 3D
LIDAR like the Velodyne system, and rejection of unknown
signals from other nearby systems. Using multiple laser
illumination planes restricts the resolution of the additional
dimension, but maintains high illumination flux.

E. Conclusion

We presented a smartphone-based laser distance sensor
that is low-cost, solid-state, compact, and works outdoors.
The only modifications required to the phone were the
addition of a line laser and driver electronics connected
to the phone via USB, and a replacement of the camera’s
infrared-block filter with a band-pass filter. The appearance
of infrared-sensitive and global shutter cameras on mobile
devices, along with silicon advances in phone processors,
will enable Smartphone LDS to achieve even longer range,
and improved eye-safety, readily working with completely
unmodified phones by simply attaching a protective phone
case with integrated electronics, laser, and filter.
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